Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat.

نویسندگان

  • R D de Leon
  • H Tamaki
  • J A Hodgson
  • R R Roy
  • V R Edgerton
چکیده

Adult spinal cats were trained initially to perform either bipedal hindlimb locomotion on a treadmill or full-weight-bearing hindlimb standing. After 12 wk of training, stepping ability was tested before and after the administration (intraperitoneal) of the glycinergic receptor antagonist, strychnine. Spinal cats that were trained to stand after spinalization had poor locomotor ability as reported previously, but strychnine administration induced full-weight-bearing stepping in their hindlimbs within 30-45 min. In the cats that were trained to step after spinalization, full-weight-bearing stepping occurred and was unaffected by strychnine. Each cat then was retrained to perform the other task for 12 wk and locomotor ability was retested. The spinal cats that were trained initially to stand recovered the ability to step after they received 12 wk of treadmill training and strychnine was no longer effective in facilitating their locomotion. Locomotor ability declined in the spinal cats that were retrained to stand and strychnine restored the ability to step to the levels that were acquired after the step-training period. Based on analyses of hindlimb muscle electromyographic activity patterns and kinematic characteristics, strychnine improved the consistency of the stepping and enhanced the execution of hindlimb flexion during full-weight-bearing step cycles in the spinal cats when they were trained to stand but not when they were trained to step. The present findings provide evidence that 1) the neural circuits that generate full-weight-bearing hindlimb stepping are present in the spinal cord of chronic spinal cats that can and cannot step; however, the ability of these circuits to interpret sensory input to drive stepping is mediated at least in part by glycinergic inhibition; and 2) these spinal circuits adapt to the specific motor task imposed, and that these adaptations may include modifications in the glycinergic pathways that provide inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats.

After a spinal hemisection at thoracic level in cats, the paretic hindlimb progressively recovers locomotion without treadmill training but asymmetries between hindlimbs persist for several weeks and can be seen even after a further complete spinal transection at T13. To promote optimal locomotor recovery after hemisection, such asymmetrical changes need to be corrected. In the present study we...

متن کامل

Minocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury

Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...

متن کامل

Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only.

Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical s...

متن کامل

Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry.

After incomplete spinal cord injury (SCI), compensatory changes occur throughout the whole neuraxis, including the spinal cord below the lesion, as suggested by previous experiments using a dual SCI paradigm. Indeed, cats submitted to a lateral spinal hemisection at T10-T11 and trained on a treadmill for 3-14 wk re-expressed bilateral hindlimb locomotion as soon as 24 h after spinalization, a p...

متن کامل

Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.

Anuran metamorphosis includes a complete remodeling of the animal's biomechanical apparatus, requiring a corresponding functional reorganization of underlying central neural circuitry. This involves changes that must occur in the coordination between the motor outputs of different spinal segments to harmonize locomotor and postural functions as the limbs grow and the tail regresses. In premetam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 1999